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Camera, LiDAR and IMU based Multi-sensor Fusion SLAM: A Survey
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Abstract: In recent years, simultaneous localization and mapping (SLAM) technology has prevailed in a wide range

of applications such as autonomous driving, intelligent robots, augmented reality (AR), and virtual reality (VR).

Multi-sensor fusion using the most popular three types of sensors (e.g., visual sensor, LiDAR sensor, and IMU)

is becoming ubiquitous in SLAM, in part because of the complementary sensing capabilities and the inevitable

shortages (e.g., low precision, long-term drift) of the stand-alone sensor in challenging environments. In this article,

we survey thoroughly the research efforts taken in this field and strive to provide a concise but complete review of

the related work. Firstly, a brief introduction of the state estimator formation in SLAM is presented. Secondly, the

state-of-the-art algorithms of different multi-sensor fusion algorithms are given. Then we analyze the deficiencies

associated with the reviewed approaches and formulate some future research considerations. This paper can

be considered as a brief guide to newcomers and a comprehensive reference for experienced researchers and

engineers to explore new interesting orientations.
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1 Introduction

SLAM[1] is a technology that estimates the state (e.g.,
position, orientation, velocity, sensor bias, calibration
parameters) of a robot and at the same time constructs a
model of the environment where the robot is moving
using data perceived by sensors on the robot. Over
the past 36 years, significant progress has been made
by the SLAM community, enabling wide applications
in related industries. Early SLAM research introduced
the main probabilistic formulations of SLAM[2], then
fundamental properties (observability, convergence,
and consistency) of SLAM were analyzed[3], and
nowadays the essential requirements to consider

• Jun Zhu and Hongyi Li are with the Department of Automation,
Tsinghua University, Beijing 100084, China. E-mail: j-
zhu20@mails.tsinghua.edu.cn; lihy20@mails.tsinghua.edu.cn.

•Tao Zhang is with the Department of Automation, Tsinghua
University, Beijing 100084, China. E-mail: taozhang@
tsinghua.edu.cn.

∗To whom correspondence should be addressed.
Manuscript received: year-month-day; accepted: year-month-
day

are robust performance, high-level understanding of
the environment, resource awareness and task-driven
perception[4]. Nevertheless, a single sensor is hardly
capable of these demands. Although global navigation
satellite system (GNSS) can provide absolute position,
it is not always available or accurate in the environments
like tunnels, caves, city canyons, etc. Low-cost,
light-weight IMU has been widely used, but its
measurements are corrupted by noise and bias such that
it cannot provide reliable pose estimates for long-term
navigation. The monocular camera suffers from scale
drift, and LiDAR fails in structure-less environments.
Therefore, with multi-sensor fusion, the deficiencies
of stand-alone sensors can be compensated, and more
reliable estimates will be provided.

Recently, several surveys about multi-sensor fusion
SALM have been proposed. Some reviews[4–7]

focused on multi-sensor fusion in autonomous driving,
while most reviews[8–13] pay attention to visual-inertial
SLAM. There are few surveys about LiDAR-inertial or
visual-LiDAR SLAM[14].

Ref.[5] is mainly focusing on the multi-target
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tracking in automated driving but not SLAM in
particular. On the other hand, Ref.[6] is like Ref.[14]
focusing on the visual-LiDAR fusion in SLAM context.

This paper mainly focuses on three types of
sensors (visual sensor, LiDAR, and IMU), which
are the most popular sensors in multi-sensor fusion
algorithms. To make this paper accessible to new
researchers on multi-sensor fusion SLAM, we first
present a brief introduction of the state estimator
formation in section 2. Then, section 3 divides
the sensor fusion methods into four categories, i.e.,
visual-inertial, LiDAR-inertial, visual-LiDAR, and
LiDAR-visual-inertial fusion algorithms, and presents a
comprehensive and systematic review for each category
respectively over the last ten years and especially attach
attention to deficiency compensation. We discuss the
challenges and future research directions in section 4.
Finally, we draw our conclusions in Section 5.

2 Brief Introduction of the State Estimator
Formation

Kalman filter and sliding window optimization are the
most commonly used state estimator formations in
multi-sensor fusion. In this section, we will give a brief
introduction to them.

2.1 Kalman Filters (KF)

In SLAM, prior values are usually recursively derived
from sensors such as IMU and encoder. Measurement
values are usually obtained from sensors such as GPS,
camera, and LIDAR. The posterior value is the fusion
result, which also is positioning output. In actual Robot
State Estimation, the posterior probability density with
estimation can be expressed as:

p(xk|x̌0,v1:k,y0:k) (1)

where k is the index of IMU measurement, xk is robot
position at kth state vector, and x̌0 is the initial state
vector, v1:k means input vector from 1st to kth , y0:k

means observational vector from the initial state to kth.
The kinematic equation and Observational equation

are as follows:
xk = f (xk−1,vk,ωk) (2)

yk = g (xk,nk) (3)

where ωk is the process noise vector that is assumed
to be zero-mean Gaussian with the covariance Rk, nk

is the measurement noise vector that is assumed to be
zero-mean Gaussian with the covariance Qk.

Algorithm 1: Kalman Filter

1 Kinematic equation:

xk = F k−1xk−1 +Bkvk + ωk,ωk ∼ N (0,Rk)

2 Observational equation:

yk = Gkxk + nk,nk ∼ N (0,Qk)

3 State Propagation:

x̌k = F k−1x̂k−1 +Bk−1vk

P̌ k = F k−1P̂ k−1F
T
k−1 +Rk

4 Kalman Gain:

Kk = P̌ kG
T
k

(
GkP̌ kG

T
k +Qk

)−1

5 Update:

x̂k = x̌k +Kk (yk −Gkx̌k)

P̂ k = (I−KkGk) P̌ k

Using KF to solve Robot State Estimation is a
common method. It is one of the best Bayesian Filters
research technologies, but it can only solve the linear
Gaussian system. The overview of KF is given in
Algorithm 1.

2.1.1 Extended Kalman Filters (EKF)
EKF is obtained by extending KF to nonlinear
problems. The overview of EKF is given in Algorithm
2.

Algorithm 2: Extended Kalman Filter

1 Kinematic equation:

xk ≈ f (x̂k−1,vk) + F k−1(xk−1 − x̂k−1) +wk

2 Observational equation:

yk ≈ g (x̌k) +Gk(xk − x̌k) + nk

3 State Propagation:

x̌k = f (x̂k−1,vk)

P̌ k = F k−1P̂ k−1F
T
k−1 +Rk

4 Kalman Gain:

Kk = P̌ kG
T
k

(
GkP̌ kG

T
k +Qk

)−1

5 Update:

x̂k = x̌k +Kk (yk − g (x̌k))

P̂ k = (I−KkGk) P̌ k

where F k−1 is the Jacobian matrix of f(xk−1,vk), Gk

is the Jacobian matrix of g(x̌k).

2.1.2 Iterated Extended Kalman Filters (IEKF)
The closer between the linearization operating point and
the truth value, the smaller error will be brought. So
to gradually find the exact linearization point through
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iteration, thus improving the accuracy. The overview of
IEKF is given in Algorithm 3.

Algorithm 3: Iterated Extended Kalman Filter

1 Kinematic equation:

xk ≈ f (x̂k−1,vk) + F k−1(xk−1 − x̂k−1) +wk

2 Observational equation:

yk ≈ g (x̌option,k) +Gk(xk − x̌option,k) + nk

3 State Propagation:

x̌k = f (x̂k−1,vk)

P̌ k = F k−1P̂ k−1F
T
k−1 +Rk

4 Kalman Gain:

Kk = P̌ kG
T
k

(
GkP̌ kG

T
k +Qk

)−1

5 Update:

x̂k =x̌k +Kk [yk − g (x̌option, k,nk)]

−Kk [Gk (x̌k − x̌option, k)]

P̂ k =(I−KkGk) P̌ k

Unlike EKF, IEKF requires repeatedly calculating
Kalman Gain Kk and posterior mean x̂k until the
results change a little. At last, updating posterior
covariance P̂ k once.

2.1.3 Error-State Kalman Filter (ESKF)
In error-state filter formulations, denoting as follows:

xt = x+ δx (4)

where xt is true state values, x is nominal state values,
δx is error state values. High-frequency IMU data
um is integrated into a nominal state x. But It does
not consider noise terms and other possible model
imperfections, leading to accumulated errors. These
errors are collected in the error-state δx and estimated
with the ESKF, this time incorporating all the noise
and perturbations. The overview of ESKF is given in
Algorithm 4.

2.2 Sliding Window Optimization

Sliding window optimization, which optimizes all states
in a sliding window, has been widely used in multi-
sensor fusion algorithms because of its advantage of
bounded computation costs and relatively sufficient
accuracy. For a sliding window of n states, the

optimal states X =
[
XT

1 , · · · ,X
T
n

]T
are obtained by

Algorithm 4: Error-State Kalman Filter

1 Kinematic equation:

δxk = f (xk−1, δxk−1,vk,wk) ≈ F k−1δxk−1 +wk

2 Observational equation:

yk = g (xt,k) + nk

3 State Propagation:

δx̌k = F k−1δx̂k−1

P̌ k = F k−1P̂ k−1F
T
k−1 +Rk

4 Kalman Gain:

Kk = P̌ kG
T
k

(
GkP̌ kG

T
k +Qk

)−1

5 Update:

P̂ k = (I−KkGk) P̌ k

δx̂k = Kk [yk − g (xt,k)]

6 Note:

Gk =
∂g

∂δxk
=

∂g

∂xt,k

∂xt,k

∂δx

minimizing in the form of maximum a posterior.

min
X

{
∥rp (X )∥2 +

∑
k∈I

∥rI (k,X )∥2P k
I

+
∑
k∈A

∥rA (k,X )∥2P k
A

}
(5)

where rI(k,X ) is the IMU residual term which
incorporates the relative motion constraints between
frames and is usually computed by preintegration
to avoid repropagating IMU states. rA(k,X ) is
visual or LiDAR residuals term incorporating geometric
constraints from visual or LiDAR measurements. P k

I
and P k

A are corresponding covariance matrices. I is
the set of all IMU measurements and A is the set of all
visual or LiDAR features in current window. rp(X )

denotes the prior residual term from marginalization
due to window-sliding. Thanks to marginalization, the
sliding window optimization limits the computational
complexity without substantial information loss[15].

3 Multi-Sensor Fusion Algorithms

In this paper, we mainly consider three kinds of sensors:
monocular camera, LiDAR, and IMU. Firstly, we divide
the multi-sensor fusion algorithms into four categories,
i.e., visual-inertial, LiDAR-inertial, visual-LiDAR, and
LiDAR-visual-inertial fusion algorithms. Then, we
give detailed descriptions of the state-of-the-art (SOTA)
methods for each category. Representative methods for
each category are shown in Table 1.
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Table 1 The SOTA methods of multi-sensor fusion

Fusion type Year Method Type Loop Closure Sensor type Fusion strategy

visual-inertial
2013 MSCKF 2.0[16] FB - MC+IMU MSCKF
2015 ROVIO[17] FB - MC+IMU EKF-SLAM
2017 VINS-Mono[18] OB FAST + DBoW MC+IMU SWO+PGO

LiDAR-inertial

2021 LION[19] LC - ML+IMU SWO
2019 LIOM[20] TC - ML+IMU SWO
2020 LINS[21] TC - ML+IMU iterated ESKF
2020 LIO-SAM[22] TC Euclidean distance ML+IMU FGO

2021 LILI-OM[15] TC Euclidean distance ML or SL+IMU
SWO + PGO+
FGO

2021 FAST-LIO[23] TC - SL+IMU Iterated ESKF
2022 Faster-LIO[24] TC - SL+IMU Iterated ESKF

visual-LiDAR

2014 DEMO[25] LC - ML+RC BA
2018 Method[26] LC ORB + DBoW ML+RC SWO + PGO
2018 LIMO[27] LC - ML+MC BA
2020 Method[28] TC ORB + DBoW ML+MC BA
2021 TVL-SLAM[29] TC ORB + DBoW ML+MC BA
2022 Method [30] TC FAST + DBoW ML+MC PGO

LiDAR-visual-
inertial

2020 LIC-Fusion 2.0[31] TC - ML+MC+IMU MSCKF
2021 Super Odometry[32] TC - ML+MC+IMU FGO

2021 LVI-SAM[33] TC
Euclidean distance
FAST + DBoW

ML+MC+IMU FGO

2022 R3LIVE[34] TC - ML+MC+IMU Iterated ESKF
Note: Type: “FB" denotes filtering-based method, “OB" denotes optimization-based method, “LC" denotes loo-
sely-coupled method, and “TC" denotes tightly-coupled method. Loop Closure: “FAST" denotes Features From
Accelerated Segment Test, “ORB" denotes Oriented Fast and Rotated Brief, “DBoW" denotes Distributed Bag
of Words. Sensor type: “MC" denotes monocular camera, “ML" denotes mechanical LiDAR, “SL" denotes solid-
state LiDAR, and “RC" denotes RGB-D camera. Fusion strategy: “FGO" denotes factor graph optimization,
“BA" denotes bundle adjustment, “SWO" denotes sliding window optimization, and “PGO" denotes pose graph
optimization.

3.1 Visual-Inertial Fusion Algorithms

In a navigation system, we want to estimate the
six degree-of-freedom (DOF) poses (orientations and
positions) of a sensing platform. IMU has been
widely used in navigation systems because of its small
size, lightweight, low cost, and, most importantly,
the ability to measure three-axis angular velocities
and linear accelerations of the sensing platform
to which it is rigidly attached at high frequency.
However, the navigation system with IMU-only suffers
from unbounded errors caused by the integration
of IMU measurements with bias and noise and
cannot provide reliable pose estimates for long-term
navigation. Additional sensors are needed to overcome

this problem. A small and lightweight monocular
camera that provides good tracking and rich map
information about the environment around the sensing
platform could serve as one of the idea complementary
sensors to IMU. The fusion of IMU and camera
yields visual-inertial navigation systems (VINS) which
have attracted significant attention over the last two
decades. Generally, VINS algorithms can be divided
into optimization-based and filtering-based methods
based on the type of data fusion.

3.1.1 Filtering-Based Methods
To enable efficient estimation, filtering-based methods
usually restrict the inference process to the latest state of
the system, namely the current camera pose and features
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observed from it, resulting in the complexity growing
quadratically in the number of features. A structureless
approach, maintaining a window of camera poses to
fully use all features and allow real-time operation,
is a good alternative. And MSCKF[35] is an elegant
example of the structureless approach, in which a static
feature is used to define geometric constraints involving
all the camera poses where it is viewed. When a
feature goes out of the field of view, its position is
estimated using all its measurements by Gauss-Newton
minimization. Then residual equations are established,
and the introduction of left nullspace makes sure that
the residual vector is independent of the feature position
errors. The delayed linearization approach doesn’t need
the assumption that feature positions are Gaussian at
each time step and has complexity only linear in the
number of features.

However, the MSCKF suffers from inconsistency
in long trajectories. Li and Mourikis[16, 36] proved
that, for a standard EKF-based VINS, the observability
properties of the linearized system did not match
those of the underlying nonlinear system because
of linearizing the measurement models with updated
estimates. Thus they proposed the MSCKF 2.0
algorithm in which the appropriate observability
properties were ensured by using the first available
estimate for each state when calculating Jacobians.
Besides, many other works focus on improving
the consistency of filtering-based methods, such as
observability constrained algorithm[37–39], optimal-
state-constraint EKF[40], MSCKF-LG[41], robocentric
VIO algorithm[42, 43], invariant Kalman filter[44–46] and
so on.

When feature positions are included in the state
vector, the parameterization of feature positions that
has an influence on the consistency has to be
considered. The parameterization could be divided
into two main approaches: delayed and undelayed
initializations. The former usually refers to the
Cartesian-coordinate (XYZ) parametrization, where the
feature depth with high uncertainty cannot be well-
represented by the Gaussian distribution, resulting in
degrading accuracy and consistency[16]. To overcome
this problem, undelayed initializations, such as inverse-
depth feature parametrization, homogeneous feature
parametrization, and anchored homogeneous feature
parametrization[47], were proposed to enable features
newly detected to be used in filter immediately.
The inverse-depth feature parametrization was firstly

proposed in monocular SLAM[48, 49] before being
adopted by several VINS algorithms[50, 51]. Filtering-
based methods have been applied to many platforms
because of their high-accuracy state estimation and
low computational requirement. Kim and Sukkarieh[52]

proposed the first airborne SLAM implementation with
actual flight and observation data, where the bias
in the accelerometers and gyros were not included
in the state vector, and observations provided the
relative locations of the landmarks from the UAV.
The problem of feature position parameterization and
initialization is avoided because of the known size of
the landmarks. Lynen et al.[53] proposed a framework
for large-scale pose estimation and tracking where
the employment of map and descriptor compression
schemes and efficient search algorithms enabled real-
time performance on mobile platforms with limited
resources. Fang et al.[54] proposed a visual-inertial
based real-time motion-tracking approach for mobile
AR/VR, where an adaptive filter was proposed to
alleviate the jitter phenomenon.

3.1.2 Optimization-Based Methods
Optimization-based methods could be divided into
fixed-lag smoothing algorithms and full smoothing
algorithms based on the number of camera poses
involved in the estimation. The latter estimates all poses
and features in history by solving a large nonlinear
optimization problem to ensure high accuracy with high
computational demand[55–57], while the former only
considers a window of recent states.

Methods like MSCKF, also called EKF-based
fixed-lag smoothing approaches, are fragile to a
gradual accumulation of linearization errors[58], while
optimization-based ones process state estimation by
solving the least square nonlinear problem where
measurements are re-linearized iteratively to treat
nonlinearity better. OKVIS[59] was an optimization-
based fixed-lag smoothing algorithm, which combined
IMU error and the feature reprojection error in a
single cost function and marginalized old states to
bound the complexity. The keyframe paradigm was
employed in this method for drift-free estimation
especially when slow or no motion at all. The
use of stereo vision in OKVIS makes the metric
scale observable. However, in the monocular case,
estimator initialization is a significant challenge, since
acceleration excitation is needed to have metric
scale observable which implies that monocular VINS
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Fig. 1 The pipeline of VINS-mono, reproduced from Ref.[18]

estimators cannot start from a stationary condition.
Besides, IMU processing and camera-IMU extrinsic
calibration have to be considered. And these issues
were addressed by VINS-mono[18], including five parts:
measurement preprocessing, estimator initialization,
nonlinear optimization-based VIO, loop closure, and
global pose graph optimization. VINS-mono is a robust
and versatile monocular visual-inertial estimator, which
has been successfully applied to AR[61] and MAVs[62].

State propagation, in the filtering-based methods,
is the most straightforward approach to IMU
processing. While for optimization-based methods,
IMU measurements are typically integrated between
frames to form relative motion constraints[56, 59, 63, 64].
However, the state estimate changes at each iteration
of optimization, resulting in repeated IMU integration
between all frames. To avoid this, Lupton and
Sukkarieh[65] first proposed a reparametrization of the
relative motion constraints, called IMU preintegration,
which parametrize rotation error using Euler angles.
Then Shen et al.[66] developed an on-manifold
rotation formulation for IMU preintegration and
Forster et al.[67, 68] further brought the theory of IMU
preintegration to maturity.

3.2 LiDAR-Inertial Fusion Algorithms

In recent years, there has been a growing focus on
LiDAR-inertial fusion algorithms, since IMU measures
instant motion at a high frequency, which can be utilized
to recover point clouds from highly dynamic motion
distortion and predict the relative pose between two

LiDAR frames. According to sensor fusion type,
LiDAR-inertial fusion algorithms can be categorized
into either loosely-coupled methods or tightly-coupled
methods. Loosely-coupled methods, appealing for
runtime, consider the estimation of the LiDAR and
the estimation of the IMU separately, resulting in
information loss and inaccurate estimates. While
tightly-coupled methods, aiming at accurate estimates,
fuse point clouds and IMU measurements in an
optimization-based or filtering-based framework with
higher computational cost. The current state-of-the-art
approaches to the two fusion types will be presented in
this part.

3.2.1 Loosely-coupled Methods
LOAM[69] is a classical 3D LiDAR SLAM method,
whose structure is composed of three main modules,
namely, feature extraction, odometry and mapping. The
structure has been typically inherited by existing works.
In LOAM, edge points and planar points extracted in
the growing point cloud of the current sweep are used
to find correspondences in the last sweep to update
the pose transform from the last recursion. With the
assumption of constant angular and linear velocities
during a sweep, the pose transform at different times
within a sweep can be computed by linear interpolation
of the pose transform from the last recursion. However,
when velocity changes fast, LOAM suffers from low
accuracy, which can be mitigated by IMU. Integrating
IMU measurements provides poses of different times
during a sweep, which can effectively compensate
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for the motion distortion, leading to considerably
increasing accuracy and robustness[70].

LION[19] is a loosely-coupled LiDAR inertial
odometry algorithm that shares similar odometry with
LOAM without feature extraction and mapping for
low computational cost. The condition number
is used in LION as an observability metric to
determine whether other more reliable odometry
sources need to be used. To make better use of
historical frame information, tightly-coupled LiDAR-
inertial methods[15, 20–23] usually adopt scan-to-local
map registration, where the local map consists of a
small number of recent LiDAR frames.

3.2.2 Tightly-coupled Methods
LIOM[20] provided the first open-source
implementation for the tightly coupled LiDAR inertial
fusion method inspired by visual-inertial works[18, 59].
With the same assumption of LiDAR motion as
LOAM, the position of each point during a sweep
can be corrected by linear interpolation of predicted
LiDAR motion by IMU propagation. LIOM maintains
a sliding window consisting of current LiDAR sweep
and recent sweeps, where the frame of pivot LiDAR
sweep is used as the local frame, and all sweeps in the
window are transformed to the local frame to get the
local map. LIOM optimizes the pivot LiDAR pose and
the following ones rather than the current pose only
in the sliding window via a cost function containing
the prior items from marginalization, the residual of
the relative LiDAR constraints and IMU constraints.
Before carrying out non-linear optimization within
the local window, the IMU states are initialized
by the methods in VINS-mono[18] with the IMU
measurements and the poses of the LiDAR provided
by LOAM in the initialization step. To improve the
runtime efficiency, LINS[21] introduced an iterated
ESKF and robocentric formulation. In LIO-SAM[22],
LiDAR-inertial odometry was formulated atop a factor
graph[71], making it especially suitable for multi-sensor
fusion.

Solid-state LiDAR often has non-repetitive and
irregular scan patterns with small FoVs, for which
common feature extraction methods are not well
suitable. To tackle this, LILI-OM[15] presented the
first tightly-coupled solid-state LiDAR-inertial fusion
algorithm where a new feature extraction method
was developed by performing eigendecomposition
for small point patch split in the time domain.

Besides, a keyframe scheme is used in sliding window
optimization to ensure real-time performance since
exploiting all sensor readings is time-consuming.
LILI-OM adopted a similar approach as LOAM to
compensate for motion distortion, while in FAST-
LIO2[23, 70], a back-propagation process was performed.
FAST-LIO2 did not extract any features but directly
registered raw points to the map maintained by an
incremental k-d tree data structure. The k-d tree
proposed supports downsampling on the tree, ensuring
the sparsity of the map and fast k-nearest search.
Faster-LIO[24], basically developed from the FAST-
LIO2, proposed a sparse and incremental voxel-based
LiDAR-inertial odometry for fast-tracking.

3.3 Visual-LiDAR Fusion Algorithms

Visual sensors, such as monocular camera, are usually
cheap, and the extraction of visual features enables
loop closure detection. However, the vision-based
navigation system is sensitive to illumination change
and texture deficiency. LiDAR, as an active sensor,
shows better accuracy and robustness to changing
environments but suffers from structure-less scenarios,
such as long corridors, even if rich texture information
exists. Existing works proposed to compensate for
the deficiencies of one sensor of the two using
another because of their complementary strengths and
weaknesses can be divided into two categories: loosely-
coupled methods and tightly-coupled methods. Some
works focus on the frontend integration while others
pay attention to the backend optimization, and a
detailed discussion about them will be given in the
following.

3.3.1 Loosely-coupled Methods
Zhang et al.[25, 72] utilized LiDAR depth information to
enhance visual odometry in DEMO. They utilized the
estimated pose of the camera to register a depth map,
where new points from point clouds in the front of the
camera were added. The map points are converted into
a spherical coordinate system and stored in a 2D kd-
tree based on the two angular coordinates. Then, for
each feature, the depth can be obtained by projecting
onto a planar patch formed by three points in the kd-
tree closest to the feature. The LiDAR information
is not fully exploited in this method. Besides, the
undistortion of the LiDAR point cloud is not mentioned.
Loop closure detection, which was not considered in
this method, was addressed later in Ref.[73] by applying
ORB features and bags-of-word. Shin et al.[26, 74] used a



Jun Zhu et al.: Camera, LiDAR and IMU based Multi-sensor Fusion SLAM: A Survey 9

similar strategy as DEMO to enhance visual SLAM by
depth information from LiDAR. They did not extract
features from images like DEMO. Instead, they solved
the problem within DSO[75] framework by projecting
LiDAR points onto the images as features. Then the
same multi-frame photometric optimization as DSO
was performed to estimate the poses of the keyframes.
Yan et al.[76] simply combined the state-of-the-art visual
odometry[77] and LiDAR odometry[69] in a loosely-
coupled way that the LiDAR odometry was used only
when the visual odometry failed.

To deal with challenging environments, learning
methods have been exploited. LIMO[27] levered the
power of deep learning to remove features on dynamic
objects. LIV-LAM[78] proposed unsupervised learning
for object discovery and used detected features of the
objects as landmark features.

3.3.2 Tightly-coupled Methods
Zhang et al. proposed V-LOAM[79], based on their
previous work: DEMO and LOAM[69], without the
assistance of IMU measurements to compensate for
rapid motion. In V-LOAM, the frequency of the
camera is much higher than that of LiDAR such that
the enhanced visual odometry with observable scale
could be used to undistort the LiDAR point cloud.
Besides, modeling the drift of visual odometry with
linear motion within a sweep improves the performance
of the undistortion procedure. Then the undistorted
point cloud is matched and registered to the currently
built map to refine the estimated pose. However,
removing distortion heavenly relies on the result of
visual odometry, making it susceptible to texture-less
or dynamic environments where visual odometry may
fail. Moreover, it is difficult to achieve a recovery
mechanism if the last estimate goes wrong because of
its frame-to-frame motion estimation[32].

To improve the accuracy and robustness of pose
estimation, other environmental structure features, such
as line features and planar features, have been leveraged
in recent works[28, 80]. Huang et al.[28] introduced a
novel visual-LiDAR odometry method using point and
line features detected by the Line Segment Detector[81]

and described by the Line Band Descriptor[82]. Huang
et al. [80] proposed a grid-based method to explicitly
detect scene planes from the point cloud to include as
much as possible pixel information in the photometric
term. To reduce the deterioration of occluded points,
they exploited a novel method to predict which LiDAR

points would be occluded during the viewpoint change.
Seo and Chou[83] attempted to make full use of
visual and LiDAR measurements in a novel way to
avoid the potential issue of assigning the depths of
LiDAR to non-corresponding visual features. They
maintained visual and LiDAR measurements separately
and built two different maps, a LiDAR voxel map
and a visual map, which were used together when
to solve the residuals for pose estimation. Wang et
al.[84] proposed a direct vision LiDAR fusion SLAM
framework, similar to DVL-SLAM[26, 74]. To get better
robustness in various complex environments, a frame-
to-frame tracking strategy, a LiDAR-based scan-to-map
matching method, and a Parallel Global and Local
Search Loop Closure Detection (PGLS-LCD) module
were used in their framework.

Camera-LiDAR extrinsic calibration, which is
usually ignored in existing works, has been considered
in the most recent work. TVL-SLAM[29] is a
tightly-coupled visual-LiDAR fusion algorithm, where
the visual and LiDAR measurements are used
independently in the frontend instead of enhancing one
via another, while all measurements are incorporated
in the backend optimization in a tightly coupled way.
It assumed that LiDAR point cloud and stereo image
pair were acquired at the same timestamp and the
camera-LiDAR extrinsic was known and fixed before
global bundle adjustments, making it possible to refine
the pose using all visual and LiDAR residuals by
solving a bunch optimization. The camera-LiDAR
extrinsic is estimated in global bundle adjustment when
a visual or LiDAR loop is detected, and each visual
map point is matched to the nearest LiDAR voxel to
create a constraint, ensuring good convergence. Moving
object removal in a stop-and-run scenario was also
discussed, but only visual features were considered.
Meng et al.[30] also jointly optimized visual and LiDAR
measurements in a unified framework like TVL-SLAM
except the visual features were enhanced by LiDAR
depth information.

3.4 LiDAR-Visual-Inertial Fusion Algorithms

LiDAR-only approaches are vulnerable to
environments with degenerate geometries, such as
long tunnels or wide-open spaces. Although IMU
measurements could be an excellent supplement to
LiDAR-only methods, they provide reliable pose
estimates within a few seconds. Therefore, LiDAR-
inertial methods also suffer from the degenerate case,
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especially for solid-state LiDAR, whose FOV is
small. To cope with these issues, fusing with other
sensors, particularly cameras which provide rich
visual information is necessary and has been attached
growing attention. For consistency, we also divide
LiDAR-visual-inertial methods into two categories as
above.

3.4.1 Loosely-coupled Methods
Shao et al.[85] proposed a VIL-SLAM, which used
stereo cameras as visual sensors to achieve better
performance in certain degenerate cases like traveling
through a tunnel, where the pure LiDAR system usually
fails. By fusing stereo matches and IMU measurements
in a tightly-coupled fixed-lag smoothing, the stereo VIO
outputted IMU-rate and camera-rate VIO pose, which
was used to remove motion distortion and perform
scan-to-map registration in LiDAR mapping. They
used pure visual information to detect loop closure
and construct initial loop constraint estimation, which
was further refined by LiDAR measurements. Similar
work was proposed by Wang et al.[86] with additional
consideration about module failure. Camurri et al.[87]

presented a loosely-coupled framework for legged
robots operating in real-world scenarios, and Khattak et
al.[88] presented a complementary multi-modal sensor
fusion approach for aerial robot pose estimation in
subterranean environments.

3.4.2 Tightly-coupled Methods
Zhang and Singh[89] presented a sequential, multilayer
processing pipeline, where the motion was firstly
predicted by IMU measurements, then estimated by
visual-inertial odometry, and finally refined by scan-
to-map registration. To compensate for possible
calibration variations between the un-synchronized
sensors, Zuo et al.[90] proposed a lightweight processing
pipeline, called LIC-Fusion, within the MSCKF
framework. To efficiently and robustly process the
LiDAR measurements, they additionally introduced a
novel planar feature tracking algorithm to LIC-Fusion
and proposed LIC-Fusion 2.0[31], where planar points
were extracted from LiDAR points after removing
distortion by IMU measurements and tracked across
the sliding window with an outlier rejection criteria
proposed for higher quality data association by taking
into account the uncertainty of the LiDAR scan
transformations.

Loosely-coupled methods are known for their
simplicity, extendibility, and low computational

demand, while tightly-coupled methods show better
performance in terms of accuracy and robustness. To
combine the advantages of loosely-coupled methods
with tightly-coupled methods, Super Odometry[32]

employed an IMU-centric data processing pipeline,
which consisted of three parts: IMU odometry, visual-
inertial odometry, and LiDAR-inertial odometry. The
IMU bias is constrained by the pose prior provided
by the visual-inertial odometry and LiDAR-inertial
odometry, which receives the motion prediction from
IMU odometry. Besides, a dynamic octree was applied
to ensure high performance in real-time. The key
insight behind their design is that the estimate of
IMU odometry can be quite accurate if the bias drift
is well-constrained by other sensors since the IMU
produces smooth measurements with noise but little
outliers.

By integrating the state-of-the-art VIO, namely
VINS-mono, and LIO, namely LIO-SAM, Shan et
al.[33] proposed a publicly-available system, LVI-SAM,
which was built atop a factor graph and composed
of two sub-systems, a visual-inertial system (VIS)
and a LiDAR-inertial system (LIS). Different from
Super Odometry, in LVI-SAM, feature depth could be
optionally extracted from LiDAR scans using a depth
association method, and candidate matches for loop
closure were first identified by the VIS and further
optimized by the LIS. A factor graph was used to
optimize all constraints jointly from VIS, LIS, IMU
preintegration, and loop closure.

To achieve real-time performance, Lin et al.[91]

proposed a framework of error-state iterated Kalman
filter, where the LiDAR point-to-plane residuals, the
image re-projection errors, and the IMU propagation
were fused tightly. For each image of camera input, fast
corners were detected and tracked with a map of visual
landmarks to compute the re-projection error. Besides,
a factor graph optimization was exploited to further
improve the accuracy of visual measurements within
a local sliding window. Instead of extracting features
from LiDAR point clouds and images, Zheng et al.
proposed FAST-LIVO[92], which was composed of two
direct odometry subsystems: an LIO subsystem directly
adapted from FAST-LIO2[70] and a VIO subsystem
similar to Ref.[93]. The points of the map built
by the LIO were additionally attached with image
patches and then used to align a new image in VIO by
minimizing the direct photometric errors, leading to a
time-saving backend. A similar framework was adopted
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Fig. 2 Overview of Super Odometry Algorithm, reproduced from Ref.[32]

by R3LIVE[34] with additional the Perspective-n-Point
(PnP) projection error. Loop closure is not enabled in
the above three methods and the LiDAR sensor is solid-
state LiDAR.

4 Challenges and Future Research
Directions

Although a lot of multi-sensor fusion algorithms with
different frameworks have been proposed in recent
years, there are still several challenges, such as sensor-
to-sensor calibration, efficient data association, good
initialization, and dynamic environments.

In terms of camera-to-IMU calibration, early
methods[16, 94–97] depended on artificial markers or
accurate initialization. To tackle these issues, Yang and
Shen[98] proposed a methodology that was able to get
accurate camera-IMU extrinsic calibration on the fly.
However, their method assumed that sufficient features
could be tracked. For camera-LiDAR calibration,
Geiger et al.[99] proposed an automatic approach using
a single shot by detecting and matching special marker
boards in both camera and LiDAR FOVs. Markerless
calibration by maximizing mutual information between

the sensor-measured surface intensities was introduced
in Ref.[100]. To ensure good convergence, Chou and
Chou[29] made the extrinsic an adjustable variable in
global bundle adjustment by adding pure geometry
constraints via registration between visual map points
and LiDAR voxel maps, while this method needed
good initial values and vision-only methods might not
provide visual map points with accurate scale.

More data can bring higher accuracy, but it usually
demands more computational resources. Super
Odometry[32] consists of three parts: IMU odometry,
visual-inertial odometry, and LiDAR-inertial odometry,
which means that real-time performance on a limited-
resource platform is not guaranteed. Fusing the
results of odometry may take much more time than
directly associating data from sensors. LVI-SAM[33]

takes advantage of accurate LiDAR depth information
to greatly promote the visual-inertial odometry
initialization and R3LIVE[34] directly exploits the
LiDAR point cloud for feature tracking on the image
without feature extraction and triangulation, which
remarkably accelerates the visual-inertial odometry.
However, this approach may fail when mechanical
LiDAR is used. More general and efficient data
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association is still challenging in the LiDAR-Visual-
Inertial fusion algorithm.

Due to the nonlinearity of the visual-inertial methods,
a poor initialization can have a dramatic impact on their
performance. By leveraging relative rotations from
short-term IMU pre-integration, Ref.[98,101] proposed
a linear estimator initialization method without
gyroscope bias, resulting in unreliable initialization
when visual features are far away from the sensor
suite[18]. A closed-form solution to the visual-inertial
structure from motion (SfM) problem was derived
in Ref.[102] and improved in Ref.[103] by modeling
the gyroscope bias. Built on top of ORB-SLAM[104],
Ref.[105] introduced an IMU initialization method,
which required a few seconds for scale convergence.
To achieve a fast and robust initialization, Qin et al.[60]

aligned metric IMU pre-integration with the visual-only
SfM results to get initial values. Instead of SfM, Cheng
et al.[106] used the ORB-SLAM for faster convergence.
Besides, new methods[107–110] are emerging recently for
faster and more accurate initialization.

Most existing fusion algorithms assume that the
environment is static; however, this is not always the
case in the real world. For example, walking people and
moving vehicles are common dynamic objects existing
in the real world. Point clouds from dynamic objects
will deteriorate the accuracy of scan-to-map registration
or scan-to-scan registration, leading to wrong relative
pose estimation. Compared with mechanical LiDAR,
the field of view of the camera is much small, making
it more vulnerable to moving objects. Suppose the
tracked features on the moving objects are not properly
rejected. In that case, the motion estimator will compute
a false motion, which further deteriorates the local or
global optimization and causes the system to fail[29].

According to the literature reviewed and the above
challenges, we propose some future research directions:

• Versatile and Efficient Fusion Framework: The
current state of the art of algorithms are generally
designed for particular platforms, making them
hard to deploy on other platforms with similar
sensors. Automatic sensor-to-sensor calibration
is vital and accurate initialization should be
guaranteed, especially for platforms equipped
with visual sensors. Besides, efficient data
association should be exploited to ensure real-time
performance.

• Deep Learning aided Methods: It is a growing

field in multi-sensor fusion framework to exploit
deep learning, which can be used for feature
extraction and matching, moving objects detection,
and tracking, and environment presentation and
understanding.

• Distributed Cooperative Methods: Different robots
equipped with different sensors for the same
SLAM task will significantly reduce the burden of
the single robot, while this is a quite challenging
problem and there is little literature about it.

5 Conclusion

The multi-sensor fusion technology has gained growing
attention recently in the field of robotics. This study
provided a brief introduction to famous state estimate
formation and summarized multi-sensor fusion methods
over the last ten years. We firstly divided the multi-
sensor fusion algorithms into four categories according
to the combination of sensors and then classified them
based on data fusion. The most exemplary techniques
of each method are presented. In addition, challenges
and future research directions are discussed to make the
technology versatile, robust, and substantial.
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